基于3DCNN,ConvlSTM或光流的先前方法在视频显着对象检测(VSOD)方面取得了巨大成功。但是,它们仍然遭受高计算成本或产生的显着图质量较差的困扰。为了解决这些问题,我们设计了一个基于时空存储器(STM)网络,该网络从相邻帧中提取当前帧的有用时间信息作为VSOD的时间分支。此外,以前的方法仅考虑无时间关联的单帧预测。结果,模型可能无法充分关注时间信息。因此,我们最初将框架间的对象运动预测引入VSOD。我们的模型遵循标准编码器 - 编码器体系结构。在编码阶段,我们通过使用电流及其相邻帧的高级功能来生成高级的时间特征。这种方法比基于光流的方法更有效。在解码阶段,我们提出了一种有效的空间和时间分支融合策略。高级特征的语义信息用于融合低级特征中的对象细节,然后逐步获得时空特征以重建显着性图。此外,受图像显着对象检测(ISOD)中常用的边界监督的启发,我们设计了一种运动感知损失,用于预测对象边界运动,并同时对VSOD和对象运动预测执行多任务学习,这可以进一步促进模型以提取提取的模型时空特征准确并保持对象完整性。在几个数据集上进行的广泛实验证明了我们方法的有效性,并且可以在某些数据集上实现最新指标。所提出的模型不需要光流或其他预处理,并且在推理过程中可以达到近100 fps的速度。
translated by 谷歌翻译
确定复杂系统背后的因果关系在不同领域(例如决策,政策实施和管理建议)中起着重要作用。但是,关于时间事件序列数据的现有因果关系研究主要集中于单个因果发现,这是无法利用合并因果关系的。为了填补在时间事件序列数据上发现发现的合并原因,消除和募集原则被定义以平衡因果组合的有效性和可控性。我们还基于反应点过程来利用Granger因果关系算法来描述实体之间的燃料或抑制行为模式。此外,我们设计了“电动电路”的信息性和美学视觉隐喻,以编码汇总因果关系,以确保我们的因果关系可视化是非重叠和不相互作用的。各种排序策略和聚合布局也嵌入了我们基于平行的,定向和加权的超图中,以说明合并因果关系。我们开发的合并因果关系视觉分析系统可以帮助用户有效地探索合并的原因以及个人原因。这种交互式系统支持多样化的订购策略以及重点和上下文技术,以帮助用户获得不同级别的信息抽象。通过进行试验用户研究和事件序列数据的两项案例研究,进一步评估了系统的有用性和有效性。
translated by 谷歌翻译
动态图可视化吸引了研究人员的集中度,因为它代表了多个领域的实体之间的时变关系(例如,社交媒体分析,学术合作分析,团队运动分析)。集成视觉分析方法对于呈现,比较和审查动态图是结果的。即使开发了多年的动态图可视化,但是如何有效地可视化具有微妙变化的大规模和时间密集型动态图数据对研究人员仍然具有挑战性。为了为此类动态图数据提供有效的分析方法,我们提出了一种快照生成算法,该算法涉及人类中的人类,以帮助用户将动态图分为多粒性和分层快照,以进一步分析。此外,我们设计了视觉分析原型系统(DGSVI),以帮助用户有效访问动态图见解。 DGSVI集成了图形操作接口,以帮助用户在视觉上和交互式上生成快照。它配备了可视化动态图数据的层次快照的概述和详细信息。为了说明我们提出的此类动态图数据的建议方法的可用性和效率,我们在竞争中介绍了基于篮球运动员网络的两个案例研究。此外,我们进行了评估,并收到经验丰富的可视化专家的激动人心的反馈。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
Rankings are widely collected in various real-life scenarios, leading to the leakage of personal information such as users' preferences on videos or news. To protect rankings, existing works mainly develop privacy protection on a single ranking within a set of ranking or pairwise comparisons of a ranking under the $\epsilon$-differential privacy. This paper proposes a novel notion called $\epsilon$-ranking differential privacy for protecting ranks. We establish the connection between the Mallows model (Mallows, 1957) and the proposed $\epsilon$-ranking differential privacy. This allows us to develop a multistage ranking algorithm to generate synthetic rankings while satisfying the developed $\epsilon$-ranking differential privacy. Theoretical results regarding the utility of synthetic rankings in the downstream tasks, including the inference attack and the personalized ranking tasks, are established. For the inference attack, we quantify how $\epsilon$ affects the estimation of the true ranking based on synthetic rankings. For the personalized ranking task, we consider varying privacy preferences among users and quantify how their privacy preferences affect the consistency in estimating the optimal ranking function. Extensive numerical experiments are carried out to verify the theoretical results and demonstrate the effectiveness of the proposed synthetic ranking algorithm.
translated by 谷歌翻译
Due to their ability to offer more comprehensive information than data from a single view, multi-view (multi-source, multi-modal, multi-perspective, etc.) data are being used more frequently in remote sensing tasks. However, as the number of views grows, the issue of data quality becomes more apparent, limiting the potential benefits of multi-view data. Although recent deep neural network (DNN) based models can learn the weight of data adaptively, a lack of research on explicitly quantifying the data quality of each view when fusing them renders these models inexplicable, performing unsatisfactorily and inflexible in downstream remote sensing tasks. To fill this gap, in this paper, evidential deep learning is introduced to the task of aerial-ground dual-view remote sensing scene classification to model the credibility of each view. Specifically, the theory of evidence is used to calculate an uncertainty value which describes the decision-making risk of each view. Based on this uncertainty, a novel decision-level fusion strategy is proposed to ensure that the view with lower risk obtains more weight, making the classification more credible. On two well-known, publicly available datasets of aerial-ground dual-view remote sensing images, the proposed approach achieves state-of-the-art results, demonstrating its effectiveness. The code and datasets of this article are available at the following address: https://github.com/gaopiaoliang/Evidential.
translated by 谷歌翻译
A noisy training set usually leads to the degradation of the generalization and robustness of neural networks. In this paper, we propose a novel theoretically guaranteed clean sample selection framework for learning with noisy labels. Specifically, we first present a Scalable Penalized Regression (SPR) method, to model the linear relation between network features and one-hot labels. In SPR, the clean data are identified by the zero mean-shift parameters solved in the regression model. We theoretically show that SPR can recover clean data under some conditions. Under general scenarios, the conditions may be no longer satisfied; and some noisy data are falsely selected as clean data. To solve this problem, we propose a data-adaptive method for Scalable Penalized Regression with Knockoff filters (Knockoffs-SPR), which is provable to control the False-Selection-Rate (FSR) in the selected clean data. To improve the efficiency, we further present a split algorithm that divides the whole training set into small pieces that can be solved in parallel to make the framework scalable to large datasets. While Knockoffs-SPR can be regarded as a sample selection module for a standard supervised training pipeline, we further combine it with a semi-supervised algorithm to exploit the support of noisy data as unlabeled data. Experimental results on several benchmark datasets and real-world noisy datasets show the effectiveness of our framework and validate the theoretical results of Knockoffs-SPR. Our code and pre-trained models will be released.
translated by 谷歌翻译
Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译
Learning the underlying distribution of molecular graphs and generating high-fidelity samples is a fundamental research problem in drug discovery and material science. However, accurately modeling distribution and rapidly generating novel molecular graphs remain crucial and challenging goals. To accomplish these goals, we propose a novel Conditional Diffusion model based on discrete Graph Structures (CDGS) for molecular graph generation. Specifically, we construct a forward graph diffusion process on both graph structures and inherent features through stochastic differential equations (SDE) and derive discrete graph structures as the condition for reverse generative processes. We present a specialized hybrid graph noise prediction model that extracts the global context and the local node-edge dependency from intermediate graph states. We further utilize ordinary differential equation (ODE) solvers for efficient graph sampling, based on the semi-linear structure of the probability flow ODE. Experiments on diverse datasets validate the effectiveness of our framework. Particularly, the proposed method still generates high-quality molecular graphs in a limited number of steps.
translated by 谷歌翻译